2 resultados para cyclophosphamide

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal recessive disease which is highly enriched in the Finnish population. It is caused by mutations in the NPHS1 gene encoding for nephrin, which is a major component of the glomerular filtration barrier in the kidney. Patients with NPHS1 have heavy proteinuria and nephrotic syndrome (NS) from birth and develop renal fibrosis in early childhood. Renal transplantation (TX) is the only curative treatment for NPHS1. These patients form the largest group of pediatric kidney transplant children in our country. The NPHS1 kidneys are removed in infancy and they serve as an excellent human material for studies of the pathophysiology of proteinuric kidney diseases. Sustained proteinuria is a major factor leading to end-stage renal failure and understanding this process is crucial for nephrology. In this study we investigated the glomerular and tubulointerstitial changes that occur in the NPHS1 kidneys during infancy as well as the expression of nephrin in non-renal tissues. We also studied the pathology and management of recurrent proteinuria in kidney grafts transplanted to NPHS1 children. Severe renal lesions evolved in patients with NPHS1 during the first months of life. Glomerular sclerosis developed through progressive mesangial sclerosis, and capillary obliteration was an early consequence of this process. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. Few inflammatory cells were detected in the mesangial area. The glomerular epithelial cells (podocytes) showed severe ultrastructural changes and hypertrophy. Podocyte proliferation and apoptosis were rare, but moderate amounts of podocytes were detached and ended up in the urine. The results showed that endocapillary lesions not extracapillary lesions, as generally believed were important for the sclerotic process in the NPHS1 glomeruli. In the tubulointerstitium, severe lesions developed in NPHS1 kidneys during infancy. Despite heavy proteinuria, tubular epithelial cells (TECs) did not show transition into myofibroblasts. The most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1). Interstitial inflammation and fibrosis were first detected in the paraglomerular areas and the most abundant inflammatory cells were monocytes/macrophages. Arteries and arterioles showed intimal hypertrophy, but the pericapillary microvasculature remained quite normal. However, excessive oxidative stress was evident in NPHS1 kidneys. The results indicated that TECs were relatively resistant to the heavy tubular protein load. Nephrin was at first thought to be podocyte specific, but some studies especially in experimental animals have suggested that nephrin might also be expressed in non-renal tissues such as pancreas and central nervous system. The knowledge of nephrin biology is important for the evaluation of nephrin related diseases. In our study, no significant amounts of nephrin protein or mRNA were detected in non-renal tissues of man and pig as studied by immunohistochemistry and in situ hybridization. The phenotype analysis of NPHS1 children, who totally lack nephrin, revealed no marked impairment in the neurological, testicular, or pancreatic function speaking against the idea that nephrin would play an important functional role outside the kidney. The NPHS1 kidneys do not express nephrin and antibodies against this major glomerular filter protein have been observed in NPHS1 children after renal TX most likely as an immune reaction against a novel antigen. These antibodies have been associated with the development of recurrent NS in the kidney graft of NPHS1 patients. In our study, a third of the NPHS1 patients homozygous for Fin-Major mutation developed recurrent NS in the transplanted graft. Re-transplantations were performed to patients who lost their graft due to recurrent NS and heavy proteinuria immediately developed in all cases. While 73% of the patients had detectable serum anti-nephrin antibodies, the kidney biopsy findings were minimal. Introduction of plasma exchange (PE) to the treatment of recurrent nephroses increased the remission rate from 54% to 89%. If remission was achieved, recurrent NS did not significantly deteriorate the long term graft function. In conclusion, the results show that the lack of nephrin in podocyte slit diaphragm in NPHS1 kidneys induces progressive mesangial expansion and glomerular capillary obliteration and inflicts interstitial fibrosis, inflammation, and oxidative stress with surprisingly little involvement of the TECs in this process. Nephrin appears to have no clinical significance outside the kidney. Development of antibodies against nephrin seems to be a major cause of recurrent NS in kidney grafts of NPHS1 patients and combined use of PE and cyclophosphamide markedly improved remission rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Wegener s granulomatosis (WG) is a vasculitis with a predilection for the airways and kidneys. An increasing incidence and improved prognosis of WG has been shown. The aim of this study was to evaluate the incidence, clinical presentation, diagnostic delay, risk of dialysis-dependent renal insufficiency and mortality of WG in 1981-2000. Patients and methods: Data was retrieved from the Finnish hospital discharge register and hospital case reports. Patients diagnosed with WG in 1981-2000 were included, and their demographic and clinical data recorded. The patients were crossed with the national kidney dialysis register and the national mortality statistics. Results: A total of 492 patients (243 ♂ , 249 ♀) were diagnosed at a mean age of 54 years (SD 18). The incidence increased from 1.9 to 9.3/ million/ year. The median diagnostic delay decreased from 17 to 4 months. Patients presented most often with symptoms of the ear, nose and throat (ENT) (45%), lung (36%), musculoskeletal system (22%) and kidney (11%). Initial lung involvement, constitutional symptoms, high erythrocyte sedimentation rate (ESR) and high ELK scores [(number of simultaneously involved organ groups (ENT, Lung, Kidney)] were associated with a shorter diagnostic delay. Medical treatment of WG patients remained similar in the 1980s and 1990s. Almost 90% of patients received cyclophosphamide (CYC) and more than 90% glucocorticoid medication at some point during the course of the disease. Eighty-four patients (17%) needed dialysis. Initial renal involvement and elevated serum creatinine values were related to an increased risk of dialysis-dependent kidney disease. In two-thirds of the patients, renal impairment was reversible. Dialysis became chronic (>3 months) in 32 patients (6.5%). Nineteen patients (3.9%) received a kidney transplant. Altogether 203 patients (99 men, 104 women) died before 30 June 2005. WG was the underlying cause of death in 37%. The crude one-year and five-year survival rates were 83.3% and 74.2%, respectively. The standardized mortality ratio was 3.43 (95% CI = 2.98 to 3.94). Older age and elevated creatinine level at diagnosis predicted shorter survival. ENT symptoms at presentation and treatment with CYC were associated with better outcome. There was no additional risk associated with male gender or with either of the decades (1981-1990 and 1991-2000) Conclusions: In 1981-2000, the incidence of WG increased ca. 4.5-fold and diagnostic delay decreased to ca. one-fourth, reflecting increased recognition of the disease and improved diagnostic means. WG patients are at great risk of developing dialysis-dependent renal insufficiency and an increased risk of dying. During the study period the treatment of WG did not change markedly, nor did the prognosis improve.